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The composition of terpenoids from well preserved Cretaceous fossil resins and plant tissues from the
amber bearing deposits of El Soplao and Reocín in Cantabria (northern Spain) have been analyzed using
gas chromatography–mass spectrometry and the results are discussed using the terpenoid composition
of extant conifers as a reference. Amber is present at many horizons within two units of coastal to shallow
marine siliciclastics of Albian and Cenomanian age. The fossil resins are associated with black amber (jet)
and abundant, well preserved plant cuticle compressions, especially those of the extinct conifer genus
Frenelopsis (Cheirolepidiaceae).

We report the molecular characterization of two types of amber with different botanical origins. One of
them is characterized by the significant presence of phenolic terpenoids (ferruginol, totarol and hinokiol)
and pimaric/isopimaric acids, as well as their diagenetic products. The presence of phenolic diterpenoids
together with the lack of abietic and dehydroabietic acids excludes both Pinaceae and Araucariaceae as
sources for this type of amber. The biological diterpenoid composition is similar to that observed for
extant Cupressaceae. The second type of amber is characterized by the absence of phenolic terpenoids
and other specific biomarkers. Some terpenoids with uncertain structure were detected, as well as the
azulene derivative guaiazulene. Our results suggest that the amber from Cantabria could be fossilized
resin from Frenelopsis and other undetermined botanical sources. The biological terpenoid assemblage
confirms a chemosystematic relationship between Frenelopsis and modern Cupressaceae.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Amber is fossilized resin produced from the exudates of conifers
and certain angiosperms and is considered to be one of the few fos-
sil deposits of exceptional preservation (Konservat Lagerstätten),
because it permits the conservation of fossil organisms with all
their delicate anatomical details. Fossil resins not only preserve
the anatomy of fossil life forms that were trapped as biological
inclusions, but also constitute a valuable source of information
about their own botanical origin, ancient terrigenous ecosystems
and climatic change by means of their chemical composition
(Anderson and Crelling, 1995).
ll rights reserved.
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Analysis of the chemical composition of fossil resins is not
straightforward, because the original biochemical fingerprints of
the resins are usually modified during diagenesis, with the bioterp-
enoids (unmodified biosynthetic natural products) being trans-
formed into geoterpenoids (diagenetic products of degraded
bioterpenoids that are found in amber and fossil plant tissues; Otto
et al., 2007). Despite these diagenetic alterations, geoterpenoids re-
tain the basic skeletal structures of their biological precursors and
can be used as molecular markers (biomarkers; Peters et al., 2005;
Marynowski et al., 2007). Conifers synthesize mainly diterpenoids,
which are, along with sesquiterpenoids, the compounds that pro-
vide the best results as diagnostic biomarkers of conifers and their
resins (Otto and Wilde, 2001). Among the diterpenoids preserved
in amber, labdane derivatives and non-phenolic abietane diage-
netic derivatives have the most limited chemotaxonomic value,
as they occur in all conifer families. On the other hand, phenolic
terpenoids, such as ferruginol and totarol, are produced only by

http://dx.doi.org/10.1016/j.orggeochem.2010.06.013
mailto:cmenor@amyp.es
mailto:menorsc@inta.es
mailto:m.na jarro@igme.es
mailto:m.na jarro@igme.es
mailto:francisco.velasco@ehu.es
mailto:i.rosales@igme.es
mailto:f.tornos@igme.es
http://dx.doi.org/10.1016/j.orggeochem.2010.06.013
http://www.sciencedirect.com/science/journal/01466380
http://www.elsevier.com/locate/orggeochem


1090 C. Menor-Salván et al. / Organic Geochemistry 41 (2010) 1089–1103
the members of the families Cupressaceae and Podocarpaceae (Cox
et al., 2007). Therefore, the chemotaxonomic value of these com-
pounds is very high and their presence in amber provides very use-
ful palaeobotanical information. Although the preservation
potential of polar biomarkers is considered to be low (Otto et al.,
2007), the oldest polar diterpenoids have been identified in ex-
tracts of Middle Jurassic fossil conifer wood from Poland (Mary-
nowski et al., 2007), and diterpenoid derivatives could also be
liberated from a Carboniferous amber by pyrolysis (Bray and
Anderson, 2009).

Recently, a new Cretaceous amber deposit with exquisite, well
preserved fossil organisms, mostly insects, has been discovered
in northern Spain (Rábago village in El Soplao territory, Cantabria;
Menor-Salván et al., 2009; Najarro et al., 2009). Based on prelimin-
ary infrared spectroscopy of the El Soplao amber (Najarro et al.,
2009) and previous gas chromatography–mass spectrometry
(GC–MS) studies on amber from a neighboring site in Álava (Alonso
et al., 2000; Chaler and Grimalt, 2005), it has been suggested that
exudate from Agathis (a conifer of the family Araucariaceae) was
the most likely source of this amber, as has also been proposed
for other Cretaceous ambers (e.g. Lambert et al., 1996; Alonso
et al., 2000; Poinar et al., 2004; Chaler and Grimalt, 2005; Delclòs
et al., 2007). This speculation was largely based on the presence
of some geoterpenoids that may have been derived from agathic
and pimaric acids. However, although those compounds and their
diagenetic derivatives are characteristic of Araucariaceae, they are
not diagnostic, because they can also be found in other extant coni-
fer families (Otto et al., 2007). Moreover, Alonso et al. (2000) have
reported the presence of the phenolic abietane ferruginol in the
Álava amber samples, indicating that more extensive study of the
chemotaxonomic information contained in the amber is necessary
to establish its definite botanical origin.

In addition, meso- and macrofossil plant remains of Araucaria-
ceae are absent in these amber bearing deposits, although there
are plenty of cuticles and remains of other vascular plants, especially
the genera Frenelopsis sp. and Mirovia sp., of the extinct conifer fam-
ilies Cheirolepidiaceae and Miroviaceae, respectively (Gomez et al.,
2002a; Najarro et al., 2009). This is also the case in many other amber
deposits from the Cretaceous of Spain and France (e.g. Delclòs et al.,
2007; Néraudeau et al., 2008). Thus, the recurrent association of am-
ber with cuticles of Cheirolepidiaceae and Miroviaceae, along with
the lack of Araucariaceae remains (except for a small amount of pol-
len grains in the sediments) (Barrón et al., 2001), challenges the pro-
posed origin of the amber. Since chemical evidence has not yet given
a definitive answer, more convincing proof is necessary to accept
Araucariaceae as the source of the resin.

In this study, amber pieces and associated fossil leaves from the
Cretaceous amber bearing deposit of El Soplao (Cantabria; Fig. 1)
were systematically analyzed using complementary techniques
such as infrared spectroscopy (FTIR) and GC–MS. The overall aim
was to identify the terpenoids preserved and their diagenetic
transformation products in the fossil resin and to determine their
possible botanical sources. Due to exceptional preservation, the
amber bearing deposit at El Soplao offers a unique opportunity to
compare the molecular composition of the amber with that of
plant remains from the family Cheirolepidiaceae and Miroviaceae,
which appear in the same deposit. A morphological similarity be-
tween extinct Cheirolepidiaceae and extant Cupressaceae has been
described, but their relationship remains speculative due mainly to
the lack of molecular evidence (Broutin and Pons, 1975; Alvin and
Hluštík, 1979; Seoane, 1998; Miller, 1999; Farjon, 2008). As Chei-
rolepidiaceae is an extinct family, the connection between the
two families could aid in the chemotaxonomical study of amber
and in the confirmation of the botanical origin. We present data
of two separate types of amber found in the El Soplao deposit
and discuss their botanical origin using comparative chemotaxon-
omy based on modern resin compositions and related terpenoids
found in amber associated fossils.
2. Samples and methods

2.1. Geological background

The analyzed samples belong to the Cretaceous succession at the
northwestern margin of the Basque-Cantabria Basin in northern
Spain. During the Cretaceous, the evolution of this basin was con-
trolled by extensional, and perhaps strike-slip, deformation associ-
ated with the opening of the North Atlantic Ocean and the Bay of
Biscay (e.g. Le Pichon and Sibuet, 1971; Rat, 1988; García-Mondéjar
et al., 1996; Soto et al., 2007). Rifting during the Late Jurassic–Early
Cretaceous led to the formation of several narrow sub-basins con-
trolled by E–W, NW–SE and SW–NW trending faults; these basins
host both continental and marine sediments of variable thickness
(García-Mondéjar et al., 1996; Soto et al., 2007).

The study area lies in the Cantabria region immediately to the
north of the Cabuérniga Ridge (Fig. S1; supplementary material),
an E–W fault zone that represents a Late-Variscan structure reacti-
vated first as a paleo-high bounded by normal faults during the Early
Cretaceous, and later as reversal faults during the widespread Ceno-
zoic (Pyrenean) compression. The Lower–Middle Cretaceous (Barre-
mian–Early Cenomanian) deposits in the study area are weakly
deformed and affected only by gentle folding. They are composed
of a relatively thin (�200–800 m) syn-rift sequence that lies uncon-
formably on Carboniferous to Lower Jurassic basement (Fig. S1).

A simplified synthesis of the stratigraphy in the El Soplao and
Reocín areas is shown in Fig. 1, with formation names according
to Hines (1985) and revised by Najarro et al. (2009). The amber
bearing deposit at El Soplao is included within the Las Peñosas For-
mation (Fig. 1), a Lower Albian unit (�112–110 Ma) of continental
to transitional marine siliciclastics. Detailed descriptions of field
sections, depositional environments and fossil content of this unit
are given in Najarro et al. (2009). Within the outcrop, the El Soplao
amber deposit is characterized by about 1.5–2 m of dark, carbona-
ceous lutites, siltstones and sandstones with interbedded, centime-
ter to decimeter layers with remarkable accumulations of plant
remains and amber pieces of different sizes and forms (Fig. 2A
and B). Most amber pieces show a blue-purple color under normal
sunlight and bright milky blue fluorescence under ultraviolet light.
Plant cuticles are very abundant in the levels associated with am-
ber (Fig. 2C). They are mainly assigned to the conifer genera Frenel-
opsis and Mirovia, along with other more occasional leaves of the
ginkgoalean genera Nehvizdya and Pseudotorellia (Najarro et al.,
2009). In most of the amber beds, leaves of the genus Frenelopsis
of the extinct conifer family Cheirolepidiaceae are the dominant
macro-botanical remains. Frenelopsis were xeromorphic plants
adapted to coastal habitats and probably grew mainly in brackish
coastal marshes and mangroves, but were adapted to a wider range
of habitats (Gomez et al., 2002a, 2003).

The amber deposit at Reocín (Fig. S1; supplementary material) is
slightly younger than the El Soplao amber deposit. It is included
within the Bielva Formation (Fig. 1), a Latest Albian–Early Cenoma-
nian (�102–99 Ma) unit composed of about 250 m of tidal domi-
nated, estuarine siliciclastic deposits in the study area (Hines,
1985). Within this unit, the amber accumulations are associated
with carbonaceous claystones and tidal channel sandstones devel-
oped in estuarine mouth subtidal areas (López-Horgue et al.,
2001). Despite the differences in age, the Reocín amber shows the
same composition as the El Soplao amber. Thermal maturity indica-
tors (vitrinite reflectance) of macerals in the El Soplao deposit reveal
minor changes in the organic matter of the resins during their diage-
netic history and maximum thermal conditions during burial of
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Fig. 1. Chrono- and lithostratigraphy of the El Soplao and Reocín areas (modified from Hines, 1985). Chronostratigraphy after Gradstein et al. (2004).
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�60–70 �C (Supplementary material). Consequently and due to its
higher transparency and lack of inclusions and interferences, the El
Soplao amber was used preferentially for the chemosystematic
study.
2.2. Sampling

Amber pieces, jet (black amber), fossil wood and sediments rich
in plant cuticles were collected from the El Soplao deposit during a
recent excavation in October 2008. Two types of amber pieces
were found at the deposit in the same sedimentological and tapho-
nomical context: A type, characterized by a strong blue-purple col-
or under natural light, purple-reddish under artificial light and less
abundant B type, yellow-honey under artificial light and honey
with a bluish tinge under natural light. We collected the two types
of amber present and the black amber associated with amber of
type A and fossil plant tissue. Plant cuticles were obtained from
claystones by rinsing the plant rich sediment in an ultrasonic bath
of distilled water to remove all the clay and silt sediment. The or-
ganic residue (Fig. 2C) was air dried. Plant fragments and leaves
from different families were distinguished and separated under a
stereomicroscope.
2.3. Analytical methods

2.3.1. Infrared spectroscopy (FTIR)
IR spectra of pulverized solid amber were obtained using a

Nexus Nicolet FTIR spectrometer in the 4000–400 cm�1 range.
2.3.2. Extraction and fractionation
For the analytical characterization, two representative single

pieces (A and B; Table 1) of amber of about 50 g, with the highest
transparency available and free of major inclusions, crusts and
debris, were collected from the El Soplao deposit. Each piece was
crushed and extracted for 4 h with dichloromethane:methanol
(2:1 v:v) using a Büchi model B-811 automatic extractor. The
extractable material constitutes 16% of the total amber weight on
average. One aliquot of extract was injected directly into the port
of the gas chromatograph.

The bulk extract was then processed in order to purify the pheno-
lic terpenoid fraction and the acidic fraction and to identify unam-
biguously the minor components with higher chemosystematic
value. The aim was to establish a complete descriptive composition
of the amber sample. The extract was concentrated to a volume of
20 ml and fractionated by flash chromatography on silica gel. The
elution was performed using n-hexane, dichloromethane, dichloro-
methane:methanol (1:1 v:v), and methanol as eluents and 25
fractions of 1.5 ml were collected using an automatic fraction
collector. Each fraction was concentrated by evaporation of the
solvent under N2 and analyzed by GC–MS. The fractions with similar
compositions were combined. The polar fraction (eluted with
methanol) and the fractions containing ferruginol were recombined,
further separated using a glass column (20 cm) filled with
chromatographic grade silica gel, and eluted sequentially with
n-hexane:dichloromethane (1:1 v:v), pure dichloromethane,
dichloromethane:methanol (1:1 v:v) and methanol. Four fractions
of 20 ml were collected, designated A to D. All fractions were dried
and the alcohols and acids converted to trimethylsilyl derivatives



Fig. 2. Photographs of amber and palaeobotanical components used in this study. (A) In situ amber piece of type A (6 cm) from the El Soplao deposit, showing blue-purple
color under sunlight. (B) Amber piece of type B (3 cm) on fossil wood under sunlight. (C) In situ sediments showing their palaeobotanical components: fossil leaves of Mirovia
and Frenelopsis and one leaf of Ginkgoaceae. (D) Selected leaves of Frenelopsis sp. were used for biomarker analysis. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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by reaction with N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA)
containing 1% trimethylchlorosilane (TMCS) at 65 �C for a period of
3 h. Finally, the derivatized fractions were diluted with n-hexane
and injected into the port of the gas chromatograph.

To study the molecular content of fossil Frenelopsis and Mirovia
leaves (Fig. 2), 5 g of leaves were extracted for 4 h with dichloro-
methane:methanol (2:1 v:v) using a Büchi model B-811 automated
extractor. The bulk extract was filtered and analyzed directly by
GC–MS. The extract was then fractionated using silica gel chroma-
tography in two fractions by elution with n-hexane:dichlorometh-
ane (3:1 v:v) and dichloromethane:methanol (4:1 v:v). The polar
fraction was dried and derivatized using the method described
above. The samples of jet (black amber) were extracted using the
same protocol. Due to the lesser availability of leaves and jet and
the lower percentage of extractable organic matter, we used the
simplified fractionation described above in order to compare their
biomarker composition with that of amber.

2.3.3. GC–MS
The analyses were performed on an Agilent 6850 GC coupled to

an Agilent 5975C quadrupole mass spectrometer. Separation was
achieved on a HP-5MS column coated with (5%-phenyl)-meth-
ylpolysiloxane (30 m � 0.25 mm, 0.25 lm film thickness). The
operating conditions were as follows: 8 psi carrier pressure, initial
temperature held at 40 �C for 1.5 min, increased from 40 �C to
150 �C at a rate of 15 �C/min, held for 2 min, increased from
150 �C to 255 �C at a rate of 5 �C/min, held constant for 20 min
and finally increased to 300 �C at a rate of 5 �C/min. The sample
was injected in the splitless mode with the injector temperature
at 290 �C. The mass spectrometer was operated in the electron im-
pact mode at 70 eV ionization energy and scanned from 40 to
700 Da. The temperature of the ion source was 230 �C and the
quadrupole temperature was 150 �C. Data were acquired and pro-
cessed using Chemstation software. Individual compounds were
identified by comparing their mass spectra with those of authentic
standards and with published data (see Section 3.2).

3. Results and discussion

3.1. Infrared spectroscopy

The application of IR to the study of amber is well documented
and constitutes a basic technique for the characterization of fossil
resins (Langenheim, 1969; Grimalt et al., 1988; Alonso et al., 2000).
Because of the inclination of all ambers and resins (even non-fossil
resins) to show similar bulk infrared spectra (due to their common
chemical functional groups), IR spectroscopy has strong limitations
for the determination of their botanical origin (Yamamoto et al.,
2006). The IR spectrum of the Cantabrian amber is consistent with
those observed for other amber samples (Fig. S2; supplementary
material) and could indicate that it is composed of a mixture of ter-
penoids and labdatriene copolymers. The band pattern is similar to
the IR spectrum expected for the labdatrienes communic acid and
biformene and their polymers, consistent with the stated macro-
molecular structure of amber (Villanueva-García et al., 2005) and
with the terpenoid composition found (see Section 3.2). The weak
band at 882 cm�1 (Fig. S2, supplementary material) is characteris-
tic of the exocyclic methylene moiety supporting the labdatriene
input. The two types of amber samples found in the deposit show
similar IR spectra.

3.2. Terpenoid composition of Cantabrian amber

The total extracts of the amber contain methylated naphthalenes
(di-, tri- and tetramethylnaphthalenes) and di- and trimethyltetra-
lins, sesquiterpenoids and bi- and tricyclic diterpenoids (Table 1).
GC analysis of the bulk extract shows three different zones in the
gas chromatogram (Fig. 3). The dominant compounds in the early



Table 1
Terpenoids and their diagenetic derivatives identified in bulk and chromatographic fractions of extracts from the ambers (types A and B) of the El Soplao deposit.

Noa Compound Composition MW Relative abundanceb

A B

Abietanes and Podocarpanes
1 (XVI) 16,17-Bisnorsimonellite C17H20 224 38.2 –
2 (XXII) 16,17,18-Trisnorabieta-8,11,13-triene C17H24 228 100 100
3 16,17,19-Trisnorabieta-8,11,13-triene C17H24 228 23.4 20.9
4 (XVII) Retene C18H18 234 1.0 –
5 16,17-Bisnordehydroabietane C18H26 242 4.6 42.5
6 Simonellite C19H24 252 9.3 1.5
7 (XXVII) 14-Methyl-16,17-bisnordehydroabietane C19H28 256 2.5 6.9
8 1-Methyl-10,18-bisnorabieta-8,11,13-triene C19H28 256 – 6.6
9 (I) 18-Norabietatriene (Dehydroabietin) C19H28 256 45.8 14.0
10 (I) 19-Norabietatriene C19H28 256 3.6 4.1
11 (IV) 18-Norabieta-7,13-diene C19H30 258 9.7 –
12 (V) Norabiet-13-ene C19H32 260 57.0 23.0
13 (III) Fichtelite C19H34 262 5.8 d
14 (X) 12-Hydroxysimonellite C19H24O 268 11.8 –
15 (II) Dehydroabietane C20H30 270 40.3 –
16 (XXV) 16,17-Bisnordehydroabietic acidc C18H24O2 272 d d
17 (VIII) Ferruginol C20H30O 286 24.3 –
18 (XIII) Callitrisic acidc C20H28O2 300 d –
19 (XII) Hinokiolc C20H30O2 302 d –

Pimaranes and Isopimaranes
20 (XXI) Pimaric acidc C20H30O2 302 d d
21 (XXII) Isopimaric acidc C20H30O2 302 d d
22 (XXVI) Pimar-8-en-18-oic acidc C20H32O2 304 d d
23 Pimaradiene C20H32 272 – 4.5

Labdanes
24 14,15-Bisnorlabda-8,12-dien-18-oic acidc C18H28O2 276 d d
25 (XXXIV) E-19-Noragathic acid C19H30O2 290 10.6 3.1
26 (XXXIII) Z-19-Noragathic acid C19H30O2 290 3.7 1.5
27 (XXIX) 13-Dihydro-19-noragathic acidc C19H32O2 290 d –
28 (XXVIII) 13-Dihydroagatholic acid C20H34O3 322 11.8 –

Other compounds
29 Ionene C13H18 174 37.2 48.4
30 Methylionene C14H20 188 13.0 34.2
31 Tetrahydroeudalene C14H20 188 16.0 8.3
32 (XXXVII) Guaiazulene C15H18 198 7.6 1.5
33 (XXXVIII) Cadalene C15H18 198 8.2 7.5
34 Drimane C15H28 208 3.6 14.8
35 Homodrimane C16H30 222 3.3 3.9
36 (XXXI) 2,5,8-Trimethyl-1-butyltetralin C17H26 230 79.1 57.3
37 (XXXII) 2,5,8-Trimethyl-1-isopentyltetralin C18H28 244 d 10.8
38 (XX) Diaromatic totarane C19H24 252 1.0 –
39 (XI) Totarolc C20H30O 286 d –

a Roman numerals in parentheses refer to structures shown in Appendix A.
b Abundance relative to the major peak (100%) in the bulk extracts (GC–MS TIC). Occurrence is tabulated on compounds detected only after fractionation and derivatization

(d: detected; –: not detected).
c Also analyzed as the TMS derivative.
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elution range are a-ionene, methylionene, trimethylnaphthalene
isomers, tetrahydroeudalene, calamenene isomers, drimane and
homodrimane (identified after Dzou et al., 1999 and Sonibare and
Ekweozor, 2004). The a-ionene, methylionene and drimanes may
be derived from labdanes in the resin through degradation processes
(Yamamoto et al., 2006; Pereira et al., 2009). Overall, these
components are highly degraded diagenetic products that have no
chemotaxonomic value due to their unrecognizable parent struc-
tures. The second section of the gas chromatogram is dominated
by non-oxygenated bi- and tricyclic diterpenoids and the third
section contains polar bi- and tricyclic diterpenoids. We did not find
aliphatic lipids, hopanoids, fungal terpenoids or plant triterpenoids
in the amber samples, discarding an angiosperm contribution and
major contamination.

3.2.1. Abietane diterpenoids
The diterpenoids identified in the extracts belong to the abietane,

pimarane/isopimarane and labdane structural classes (Fig. 3). These
diterpenoids are typical of conifers (Otto and Wilde, 2001; Yamam-
oto et al., 2006), confirming such an origin for the Cantabrian ambers.
The abietane class terpenoids were identified by comparison of their
mass spectra with those of standards or published in the literature
(Czechowski et al., 1996; Otto and Simoneit, 2002; Otto et al.,
2002; Hautevelle et al., 2006; Cox et al., 2007), and comprised
18- and 19-norabieta-8,11,13-triene (I; chemical structures cited
are shown in Appendix A), dehydroabietane (II), fichtelite (III),
18-norabieta-7,13-diene (IV) and norabiet-13-ene (V). The latter
compound was tentatively identified by match with a mass spec-
trum in the literature (Hautevelle et al., 2006), characterized by a
molecular ion at m/z 260 and loss of an isopropyl group (m/z 217).
18-Norabieta-7,13-diene (IV) was identified only in sample A by a
match with the published mass spectrum (Otto and Simoneit,
2002). This compound has been described as a decarboxylation
product of abietic acid during diagenesis (Otto and Simoneit,
2002). In this case, the precursor molecule has not been found. The
lack of a clear biological precursor for norabieta-7,13-diene (IV) sug-
gests an alternative origin, possibly by double bond isomerization of
unsaturated abietanes. This composition is consistent with the dom-
inance of dehydroabietane and abietane geoterpenoids in the type A
amber. The norabietatrienes (dehydroabietins) found in both amber
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samples could be derived from all abietane precursors by diagenetic
alteration (Simoneit, 1986; Hautevelle et al., 2006).

Dehydroabietane (II) is a natural product of many Pinaceae res-
ins (Otto et al., 2007) as well as some Cupressaceae resins. In these
samples, dehydroabietane is a significant component in amber
type A, whereas it is not detectable in amber type B, suggesting a
different paleobotanical origin for both types of amber samples.
The absence of abietic (VI) or dehydroabietic acids (VII) eliminates
a Pinaceae contribution to the amber, because abietic acid is a ma-
jor component of such resins and dehydroabietic acid, its major
diagenetic derivative, is present in ambers derived from Pinaceae
(Yamamoto et al., 2006).

Phenolic diterpenoids occur in polar fraction B of the type A am-
ber (Fig. 4), with a dominance of ferruginol (VIII) and its oxidation
products 6,7-dehydroferruginol (IX) and 12-hydroxysimonellite
(X) and totarol (XI) (Otto and Simoneit, 2001; Otto et al., 2002). Fer-
ruginol and 12-hydroxysimonellite are also identifiable (underiv-
atized) in the bulk extract as part of the main components of the
amber (Fig. 3). The presence of these phenolic diterpenoids is of sig-
nificant chemosystematic value, as ferruginol is an abundant natu-
ral product in extant conifers of the families Cupressaceae and
Podocarpaceae and can be used as a characteristic biomarker of
these families (Otto and Simoneit, 2001; Marynowski et al., 2007).
A minor amount of hinokiol (3-hydroxyferruginol, XII; Fig. 5A)
was also found in the type A amber. Hinokiol has been described
from Cupressaceae (Otto et al., 2002; Cox et al., 2007). There is no
reported presence of phenolic diterpenoids in modern Araucaria-
ceae (Cox et al., 2007), but Otto and Wilde (2001) cited the occur-
rence of ferruginol in Araucaria. To avoid this ambiguity and to
test this finding under our experimental conditions, resins of Aga-
this sp. and Araucaria sp. were analyzed and ferruginol was not de-
tected in any Araucariaceae resins. Hence, these results, coupled
with the absence of kaurane or phyllocladane diterpenoids, the
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Fig. 4. GC–MS TIC trace of fraction B resulting from the column separation of the polar f
Compounds are analyzed as the TMS derivatives.
presence of totarol (see below) and the fossil record of the deposit,
suggest that Araucariaceae did not contribute to the main type of
amber found at the studied deposit (type A). On the other hand,
we did not find phenolic abietanes in the type B amber sample. This
fact, taken together with the presence of dehydroabietane in sam-
ple A and its absence in sample B, constitutes the main chemotaxo-
nomic difference between the two types of samples. A significant
relationship between amber type A and modern Cupressaceae is
the presence of a low quantity of callitrisic acid (XIII) which is an
epimer of dehydroabietic acid (VII, Fig. 5). The difference in reten-
tion time with dehydroabietic acid and the higher relative intensity
of the ion at m/z 357 (M-CH3) versus the molecular ion in callitrisic
acid are distinctive features between the two epimers used here for
the identification of the acid (Van den Berg et al., 2000; Cox et al.,
2007). Callitrisic acid has a higher chemotaxonomical value than
dehydroabietic acid due to its scarcity. In modern conifer resins,
the synthesis of callitrisic acid seems to be restricted to certain gen-
era of the Cupressaceae family and it was also found in Cenomanian
amber from the Raritan Formation (New Jersey, USA), suggesting a
relationship with Cupressaceae (Anderson, 2006).

Degradation of phenolic diterpenoids could lead to the abietane
geoterpenoids found in the type A amber (Otto et al., 1997; Otto and
Simoneit, 2001; Stefanova et al., 2002). Hautevelle et al. (2006) and
Yamamoto et al. (2006) discussed the diagenetic pathways of abie-
tane class bioterpenoids, suggesting that 18-norferruginol (XIV)
could be the precursor of dehydroabietin, and ferruginol (VIII) could
lead to 12-hydroxysimonellite (X), simonellite (XV), 16,17-bisnorsi-
monellite (XVI) and retene (XVII), all found in the type A amber. Un-
der the anaerobic depositional conditions of the amber (Najarro
et al., 2009), we could not disregard redox reactions that lead to
the actual composition found (Pereira et al., 2009). If, as in some
modern Cupressaceae genera (i.e. Cupressus; Fig. S3, supplementary
material), the original proportion of ferruginol (VIII) was high, its
ime 
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Fig. 5. GC–MS TIC traces of the polar fractions C of: (A) amber A and (B) amber B. This fraction contains mainly pimaric and labdenoic acids. The figure shows the identified
compounds in the fraction. Unlabelled peaks are considered as unidentified due to the lack of standards and published references or databases with details of their mass
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1096 C. Menor-Salván et al. / Organic Geochemistry 41 (2010) 1089–1103
diagenesis could ultimately have generated dehydroabietane (II)
and simonellite (XV), both significant in the type A amber.

3.2.2. Totarol
Totarol (XI), a tricyclic diterpenoid phenol, is considered as a con-

firmatory chemotaxonomic marker for Cupressaceae and Podocarp-
aceae, even at low concentrations (Le Métayer et al., 2008; Stefanova
and Simoneit, 2008). Totarol is detectable in the bulk extract using
the characteristic mass fragments of m/z 271 and 286. The identifica-
tion is unambiguous in amber sample A after purification of the phe-
nolic fraction of the bulk extract and analysis as trimethylsilyl
derivatives (Fig. 4). Due to the similarities between the mass spectra
of phenolic diterpenoids, the retention time and mass spectrum of
totarol (XI) were determined using a standard (Sigma–Aldrich).
The presence of totarol suggests a relationship between the palae-
obotanic origin of the amber and extant Cupressaceae or Podocarp-
aceae. To test this possibility, the phenolic diterpenoids of the amber
were compared with those from a modern Cupressaceae (Cupressus
arizonica; Fig. S3, supplementary material). Both extracts contain
ferruginol (VIII), totarol (XI) and hinokiol (XII) as the main phenolic
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diterpenoids, but sempervirol (XVIII) has not been observed. A dif-
ference between the assemblage of polar terpenoids from C. arizo-
nica and the amber is the presence of sugiol (XIX) and the lack of
callitrisic acid (XIII) in the former. We identified a diaromatic totara-
ne (XX) as a possible diagenetic product of totarol (XI), which may be
derived by a parallel diagenetic pathway as simonellite (XV) from
ferruginol (VIII) (Otto et al., 1997). In accord with the phenolic abie-
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diterpenoids could be one of the possible origins of 16,17,19-tris-
norabieta-8,11,13-triene (XXIII), a major compound identified in
the amber samples. Another possible origin for this compound is
by diagenesis of dehydroabietane and other abietane related terpe-
noids (Fig. 6; Otto et al., 2002; Pereira et al., 2009). Due to the
widespread distribution of the pimaric/isopimaric acids, the
chemotaxonomical interpretation of their presence in the Canta-
brian ambers must be taken with caution and comparisons with
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other markers and samples should be made. Continuing the com-
parison with extant conifers, pimaric and isopimaric acids consti-
tute the main tricyclic resin acids present in the conifer families
Cupressaceae, Araucariaceae and Podocarpaceae (Otto and Wilde,
2001). Taking into account a possible molecular relationship be-
tween the botanical source of Cantabrian amber A and modern
Cupressaceae, if pimaric acid (XXI) and isopimaric acid (XXII) were
the main resin acids in the precursor resin of these ambers, diage-
netic degradation to 16,17,18-trisnorabieta-8,11,13-triene (XXIII)
is consistent with the dominance of the pimarane resin acid com-
pounds in the extract, as loss of the vinyl moiety at C-13, with con-
comitant aromatization and decarboxylation at C-4 generates this
predominant isomer. Following this pathway, the presence of a
related molecule to 16,17,18-trisnorabieta-8,11,13-triene with a
C-13 ethyl group (i.e. 16,18-bisnorabieta-8,11,13-triene, XXIV)
should be expected as well, but we failed to detect such a com-
pound. Otto et al. (2002) reported a significant presence of that
geoterpenoid (XXIV) in fossil resin of the Lower Cretaceous Tritae-
nia linkii (Miroviaceae), but due to the absence of precursor biot-
erpenoids, the assignment to a specific taxon was unclear. Recent
work of Pereira et al. (2009) on Cretaceous amber from Brazil, in-
ferred some intermediates of this diagenetic route (Fig. 6), namely
16,17-bisnordehydroabietic acid (XXV), pimar-8-en-18-oic acid
(XXVI) and 14-methyl-16,17-bisnordehydroabietane (XXVII), that
are also present in the type A amber (Figs. 3–5). Work is in progress
in our laboratory in order to confirm this hypothetical pathway, as
the formation of 14-methyl-16,17-bisnordehydroabietane by rear-
rangement of a pimaradiene or abietane precursor has not been
demonstrated to date.

3.2.4. Labdane diterpenoids
Labdanoic acids and other labdane derivatives are common

components in all conifers and are therefore non-specific biomark-
ers (Otto and Wilde, 2001). 13-Dihydroagatholic acid (XXVIII) is
the predominant labdenoic acid present in the polar fraction of
amber A (Fig. 5). This acid could be a precursor molecule preserved
that constitutes the chemotaxonomic difference between the two
paleobotanical resin producers, as it is not detectable in the extract
of amber B. 13-Dihydro-19-noragathic acid (XXIX), found in sam-
ple A, could be formed from the 13-dihydroagatholic acid (XXVIII)
precursor by loss of the C-19 hydroxymethyl group at C-4 or from
the agathic acid (XXX) precursor by C-19 decarboxylation at C-4,
respectively. The diagenetic transformation of the major labdanoic
acids may be the source of the 2,5,8-trimethyl-1-alkyltetralins,
ionenes and drimanes found in the samples (Fig. 3). The MS frag-
mentation pattern of the major compound of this family, i.e.
2,5,8-trimethyl-1-butyltetralin (XXXI) with a molecular ion at
m/z 230, shows a butyl loss (57 da) from the saturated ring to form
an m/z 173 fragment (see Fig. S4, supplementary material). An-
other homologue of this compound group is 2,5,8-trimethyl-1-
isopentyltetralin (XXXII), which is significant in amber type B
but only occurs in trace amounts in amber A. The degradation
pathway leading to XXXII could be decarboxylation at C-4 of a lab-
danoic acid precursor (i.e. agathic acid, XXX), followed by aromati-
zation of ring A with methyl migration from C-10 to C-1 and
decarboxylation of C-15 (Fig. 6). These compounds were also re-
ported from Brazilian ambers (Pereira et al., 2009). The difference
found between the ambers could be indicative of differential lab-
danoic acid compositions in the original resins. Another source of
these molecules may be the degradation of the labdane macromo-
lecular structure of amber due to particular conditions that pre-
vailed in the Cantabrian deposits (see below). Other diagenetic
degradation products of labdanoic acids found in both amber sam-
ples are Z- and E-19-norlabda-8(20),12-dien-15-oic acids (XXXIII
and XXXIV, respectively) and bisnorlabda-8(20),12-dien-18-oic
acid (XXXV) (Otto and Simoneit, 2002). It is not possible to identify
all peaks found in the polar fractions of the amber extracts due to
the lack of references and possible precursors.

During burial, the El Soplao and Reocín amber deposits suffered
the influence of hydrothermal fluids related to the La Florida-
Reocín Pb–Zn mine mineralization. As a consequence, we cannot
discard the possibility of alternative transformation routes leading
to the unusual compounds found in the amber. These alternative
transformations must be added to the lack of information about
the possible chemotaxonomy of extinct Cheirolepidiaceae. Despite
these uncertainties, which result in the presence of some unidenti-
fied compounds, the low maturation (cf. vitrinite reflectance data,
supplementary material) and excellent preservation of the organic
compounds in the amber allows us to use the components of the
extract to obtain chemotaxonomic information. We suggest that
the tricyclic diterpenes originally biosynthesized by the main
botanical precursor of amber A were dominated by phenolic abie-
tanes, pimarane resin acids and totarol. The bicyclic diterpenes
probably contained a high proportion of labdanoic acids, in partic-
ular 13-dihydroagatholic acid (XXVIII) and communic acid
(XXXVI), whose polymerization leads to the typical macromolecu-
lar structure of ambers.

3.3. Terpenoid composition of co-occurring fossil leaves and
paleochemotaxonomic aspects

Due to the lack of Cupressaceae representatives in all the out-
crops of Las Peñosas Formation (Fig. 1) and the excellent preserva-
tion and dominance of Frenelopsis material, the comparison of the
terpenoid assemblage of these plant remains with those found in
the amber may help to confirm the botanical origin of the fossil re-
sin and to understand the chemosystematics of the extinct family
Cheirolepidiaceae. Since no amber associated with this family has
been documented to date (Bray and Anderson, 2008; Pereira
et al., 2009), the inclusion of Frenelopsis genera as a possible source
of one of the amber types found in the El Soplao deposit has to be
considered. Previous reports relating a possible botanical origin of
ambers to Cheirolepidiaceae should be mentioned (Gomez et al.,
2002b; Roghi et al., 2006). Macrofossil evidence of two potential
conifer resin producers was found by Najarro et al. (2009) in the
study zone: Frenelopsis (Cheirolepidiaceae family) and Mirovia
(Miroviaceae). Also, the palynological record shows a contribution
from the Araucariaceae family, but no meso- or macrofossils of this
family have been recognized yet. As Anderson (2006) pointed out,
the correlation between plant fossil evidence and co-deposited
amber should be taken with caution since the major resin producer
could be a minor species in the ecosystem. As we find two different
potential palaeobotanical contributors for the ambers of the El Sop-
lao deposit, all the types of plant macrofossil remains identified in
the deposit were examined separately in order to establish possi-
ble chemosystematic relationships.

Overall, despite the increase of aromatized derivatives such as
retene, the diterpene speciation in the Frenelopsis leaves shows
that all the main components are shared with the type A ambers
from El Soplao (Fig. 7A). Cadalene (XXXVII) and 16,17,18-trisnora-
bieta-8,11,13-triene (XXIII) are among the biomarkers detected in
the fossil leaves of Frenelopsis. The diagenetic processes undergone
by terpenoids from the fossil leaves are consistent with those ob-
served in sediments, as the leaves are not protected by the poly-
meric structure of the amber. The formation of aromatic
derivatives may be governed by clay catalysis or other abiotic pro-
cesses in soils and sediments (Otto et al., 2007). Also, the aromatic
abietanes may be generated under aerobic conditions, consistent
with the major presence of pristane and the lack of phytane (Peters
et al., 2005). The presence of norabietanes is consistent with the
diagenetic processes for terpenoids described by Frenkel and Hel-
ler-Kallai (1977). 14-Methyl-16,17-bisnordehydroabietane (XXVII)
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and 2,4,8-trimethylalkyltetralins (e.g. XXXI), described above, are
also present in the Frenelopsis leaves. The phenolic abietane ferrug-
inol (VIII) and its derivative 12-hydroxysimonellite (X) are key bio-
markers also found in the Frenelopsis leaves. This result is
consistent with the presence of ferruginol in Cenomanian Frenelop-
sis alata (Nguyen Tu et al., 2000a). This evidence, together with the
absence of ferruginol in Mirovia leaves (Fig. 8), suggests that Frenel-
opsis could be one of the botanical origins for the Cantabrian am-
ber. The terpenoid composition found in Mirovia leaves is
dominated by oxidized non-specific abietane terpenoids (mainly
simonellite and retene).

The Frenelopsis leaves and the amber of the El Soplao deposit are
largely associated with jet (black amber). The analysis of jet extract
shows a composition dominated by cadalene and alkyl derivatives
of naphthalene and tetralin. The identifiable terpenoids include
aromatized abietanes and ferruginol. Fractionation and derivatiza-
tion and GC–MS of jet extract showed the presence of ferruginol
and totarol, suggesting that jet has the same botanical origin as
the main type A amber in the deposit.

The azulene hydrocarbon derivative guaiazulene (XXXVIII), an
isomer of cadalene (XXXVII), with a strong blue color and pur-
ple-blue fluorescence, is found in low amounts in all type A am-
bers, Frenelopsis leaves and jet, suggesting a common origin from
sesquiterpenoids synthesized by Cheirolepidiaceae. Guaiazulene
is a common compound with low chemosystematic value, but
the presence of this hydrocarbon in amber has not been reported
to date. The significant quantity of this compound in the El Soplao
samples could be at the cause for the characteristic blue-purple
tinge of these ambers. Although the relationships between Chei-
rolepidiaceae and extant conifers are unclear (Bray and Anderson,
2008; Pereira et al., 2009), a morphological and histological corre-
lation between Cheirolepidiaceae and Cupressaceae has been
established (Daviero et al., 2001; Farjon, 2008). Moreover, Nguyen
Tu et al. (2000b) have observed a resemblance between the lipid
composition of Frenelopsis alata and Tetraclinis articulata, a repre-
sentative of Cupressaceae. The presence of ferruginol in Frenelopsis
(Nguyen Tu et al., 2000b and the present data) confirms the
hypothesis of a possible relationship between Frenelopsis and the
Fig. 8. GC–MS TIC trace of the total extract of Mirovia sp. leaves found in the amber dep
C30).
Cupressaceae family. Moreover, the presence of 13-dihydroagat-
holic acid (XXVIII) in the amber and the overall biomarker assem-
blage show a similarity to extant Cupressus genera (see Fig. S4,
supplementary material). The resemblance in the chemical compo-
sition between Frenelopsis and Cupressaceae representatives may
be due to convergence, as it has been demonstrated that the phys-
ical similarities between these taxa resulted from convergence
rather than phylogenetic connection (Broutin and Pons, 1975;
Alvin, 1982). The evolutionary changes in the biochemistry of ter-
penoids since the synthesis of the parent resin of amber to the
modern conifers are unknown. Consequently, we should consider
that the lack or presence of certain compounds in a correlation
with extant conifers is informative, and that detailed biomarker
compositions of extinct conifer fossils, complemented by morpho-
logical and histological relationships, are necessary to establish a
definite evolutionary relationship. Keeping this in mind, the paleo-
botanical considerations suggested by our data obtained on macro-
fossil plant samples and amber types can be summarized as
follows:

a. The absence of abietic and dehydroabietic acid in both types
of amber samples excludes an origin from resin of the Pina-
ceae family. Also, the absence of plant triterpenoids and
labdenoic acids eliminates a contribution from angiosperms
(Anderson et al., 1992; Yamamoto et al., 2006).

b. The presence of phenolic terpenoids (ferruginol, totarol and
hinokiol) in the type A amber indicates the conifer families
Cupressaceae and Podocarpaceae as possible biological pre-
cursors, and rejects the Araucariaceae family. The presence
of callitrisic acid (XIII) reinforces the biochemical relation-
ship between the parent resin of amber and modern
Cupressaceae. The plant macrofossil record in the deposit
shows that there are no representatives of Cupressaceae or
Podocarpaceae among the possible resin producers (Najarro
et al., 2009). The co-occurrence of key terpenoids (e.g. fer-
ruginol), between amber A and fossil tissue of Frenelopsis
suggests that this amber could be derived from Frenelopsis
(Cheirolepidiaceae).
osit at El Soplao showing the identified biomarkers. Solid dots: n-alkanes (last dot:
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c. The overall terpenoid composition of the type B amber is
comprised of non-specific conifer biomarkers. The absence
of phenolic terpenoids and of 13-dihydroagatholic acid
(XXVIII), together with the presence of major amounts of
diagenetic products of pimarane-type diterpenoids, satu-
rated and unsaturated norabietanes, and alkyltetralins point
to a different biological origin. A paleobotanical source for
this type of amber could not be determined on the basis of
its biomarker composition.

4. Conclusions

Analysis of the polar diterpenoids of Cretaceous ambers from El
Soplao (Cantabria, Spain) indicates that two resin producers contrib-
uted to the amber record. The main parent resin (type A) originally
contained phenolic abietanes (dominated by ferruginol), totarol,
dehydroabietane and pimaric/isopimaric acids. The dominant resin
acids found are 13-dihydroagatholic and bisnordehydroabietic
acids, with various other alteration products and a minor quantity
of callitrisic acid. This composition suggests a biochemical relation
with the resin of extant Cupressaceae. The second parent resin (type
B) contains pimaric/isopimaric acids as the only identifiable biolog-
ical precursors preserved. The phenolic diterpenoids present in the
samples (type A), the lack of phyllocladane/kaurane-type terpenoids
and the absence of macrofossil plant remains exclude a significant
contribution of Araucariaceae to the amber. Diagenetic products of
the pimarane/abietane and labdane class terpenoids constitute the
main geoterpenoids extractable from the amber of El Soplao. In-
sights from petrographic characterization of coal macerals provide
a correlation between temperature, time and level of organic diagen-
esis, indicating only a moderate degree of diagenetic alteration dur-
ing burial. This is consistent with the high level of preservation of the
natural product diterpenoids and their direct diagenetic derivatives.
The sedimentological relationships and chemotaxonomical obser-
vations suggest that one source of the amber may be the extinct
Frenelopsis (Cheirolepidiaceae).
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